Skip to content
Programs : Brochure
This page is the brochure for your selected program. You can view the provided information for this program on this page and click on the available buttons for additional options.
IIP-Queen's University Belfast
Belfast, Northern Ireland (Outgoing Program)
Program Terms:
Program Terms: Summer
Layout wrapper table for buttons
Layout table containing buttons
Request Advising
Layout table containing buttons
Partner Institution/Organization Homepage: Click to visit
Program Dates & Deadlines: Click here to view
Restrictions: Princeton applicants only
Fact Sheet: - unrelated header
Fact Sheet:
#i18n(14)# parameter/value output
Dept Offering Program: International Internship Program (IIP) Program Type: Internship
Language Prerequisite: No Degree Level: 1st year u/g students, 2nd year u/g students, 3rd year u/g students
Time Away: Summer Housing options: Student Responsibilty with support from IIP and/or Host Organization
Program Group: International Internship Program
Program Description:
Program Description:
Queen's University Belfast
Queen's University Belfast is part of the prestigious Russell Group of the UK's 24 leading research intensive universities. Their world-class researchers carry out internationally leading research, with Queen's placed joint 8th in the UK for research intensity. The UK's ninth oldest university, Queen's was founded as Queen’s College in 1845, and can trace its roots as far back as 1810. With more 170 years of heritage, Queen's University Belfast combines an international reputation for academic excellence with a life-changing student experience and a culture of innovation. Queen's prides itself on the quality of its academic leadership, with a united team of academics and professional services directorates working together to deliver its Vision.

Intern Responsibilities: IIP interns will work on one or more of the following projects:
  • Project 1: Making the most of bioenergy waste; photocatalytic conversion of glycerol to hydrogen and high value products (School of Chemistry and Chemical Engineering)
    • As a feedstock, glycerol has great potential for use in several chemical conversion routes to generate high value products. The upgradation of glycerol from processes such as biodiesel production could potentially increase the economic viability of the industry. Photocatalysis presents an alternative method to current approaches which is environmentally benign and capable of operating under favorable ambient conditions. In this instance, photons of light are used to induce glycerol oxidation to products such as 2-dihydroxyacetone leading to the reduction of protons to form H2 over a semi-conductor. This project will investigate both the synthesis of photo-active materials via traditional wet impregnation routes and mechano-chemical processes (ball-milling) and the evaluation of these materials in a novel propeller fluidized photo reactor under UV irradiation from high power light emitting diodes.
    • One intern responsibility will be to optimize the loading of metal co-catalysts (e.g. Pt, Pd, Ni) onto photo-active semiconductors such as TiO2 via different synthesis routes. The intern will then evaluate the above materials for glycerol conversion which will include the design and construction of a LED irradiation array that can be coupled to a photovoltaics panel to create a solar based unit.
  • Project 2: Deploying photocatalytic technology for the removal of organic environmental contaminants in Northern Ireland water sources, dealing with 4-chloro-2-methylphenooxyacetic acid (MPCA) (School of Chemistry and Chemical Engineering)
    • Photocatalysis is a technology that has been extensively studied for over four decades. Photocatalytic technology shows excellent potential for water treatment and has extended its feasibility for water treatment application as a result of these important factors; ambient operating conditions, low operating costs and complete mineralization of parent and any intermediate compounds without secondary pollution. In the UK, one of the most frequent organic substances identified in drinking water and groundwater is the chlorophenoxy acid herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). Northern Ireland, in particular, has been faced with significant challenges in the removal of herbicides; a total of 153 events reported over a 3 year period where MCPA exceeded the 0.1µg/L limit (EC Drinking Water Directive maximum allowable concentration). This project will focus on the development and optimization of photocatalytic technology for the degradation of MCPA along with its reaction intermediates. A variety of different reaction conditions will be investigated including light sources with a view towards light emitting diodes and solar power, pH and addition of potential reaction promoters (H2O2).
    • The intern will be responsible for working alongside PhD students in the design and construction of a large scale immobilized photocatalytic unit for the treatment of contaminated water from various sources around Northern Ireland. 
  • Project 3: Making sense of cancer data via deep learning (School of Electronics, Electrical Engineering and Computer Science)
    • This project aims to use computers to make sense of a large set of medical data relating to types of cancer. A wealth of “big data” has been compiled in databases organized by NIH, and 20000+ geneBreast, Prostate, Pancreatic, Leukemia and 20-30 more). Each cancer subtype has data of at least 1000 patient samples, and the patient-matched gene expression data of the normal tissue that the tumor was extracted from is also documented. Using this information, which genes are expressed abnormally in the tumor sample of a patient may be discovered. As well as this, mutations, copy number, survival, etc. data is available for almost all the patients. Although much effort has been put into compiling this data, the researchers or scientists can search manually for only one gene at a time, which is highly inefficient. It is also impossible to explain the cause of cancer based on merely handpicking genes of interest. When it comes to the clinic, doctors diagnose cancer patients based on immunohistochemistry and instinct and then prescribe the same course of therapy for all patients depending on the grade of cancer: surgery, followed by radiation therapy and chemotherapy. The therapy inevitably fails in 99.99% of patients. Even if the doctor does consider the gene expression data of a cancer patient, it is impossible for the human mind to make sense of such a volume of existing data and attempt to match the new patient’s data to what is available. For this reason, all of the aforementioned data turns out to be useless. Ultimately, we want to provide a better and more complete method than this inefficient handpicking method by using modern machine learning such as deep learning.
    • With appropriate guidance of lab members in Queen’s University, the intern could work on the following:
      • Building an algorithm in which data is fed into an automatic learning process that could separate for each cancer subtype. Feeding the experimental dataset of a new cancer patient’s gene expression would provide us with optimal treatment options and more realistic survival predictions by matching that data with previously treated patients who had similar gene expression patterns.
      • Generating mRNA data in a high-throughput fashion that would allow for gene expressions to be discovered and documented, and then;
      • Modifying the biochemistry map that shows interconnectivity of such genes using each patient’s data, in order to help scientists and researchers work more accurately and efficiently.

Qualifications: IIP candidates with interests in electrical engineering, computer science and mathematics are encouraged to apply. Technical skills in C/C++, Python and/or Open CL would be an asset.

Dates / Deadlines: - unrelated header
Dates / Deadlines:
Tabular data for Dates / Deadlines:
Term Year App Deadline Decision Date Start Date End Date
Summer 2019 04/01/2019 04/15/2019 TBA TBA
Layout wrapper table for buttons
Layout table containing buttons